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2 YUNHAI XIANG

1. CATEGORIES AND FUNCTORS

We start with a crash course in category theory. By a class we mean a collection of sets, which is
not necessarily a set itself, such as the class of all sets. The notion of a category generalizes the idea
of a class of structures with structure perserving maps between them.

Definition 1.1. A category C is the data of
(i) a class of objects, also denoted as C

(ii) for each pair of objects X,Y P C, a class HomCpX,Y q of morphisms from X to Y , where we
call X the domain (or source) of f and Y the codomain (or target) of f

(iii) for each triple of object X,Y, Z P C, a composition function

HomCpY,Zq ˆ HomCpX,Y q Ñ HomCpX,Zq

pf, gq ÞÑ f ˝ g

such that the following axioms are satisfied
‚ identity axiom: for each X P C, there exists an identity morphism idX P HomCpX,Xq such

that for all Y,Z P C and for all f P HomCpX,Y q and g P HomCpZ,Xq we have

f ˝ idX “ f and idX ˝ g “ g

‚ associativity axiom: for each quadruple of objects X,Y, Z,W P C and f P HomCpX,Y q,
g P HomCpY, Zq, and h P HomCpZ,W q, we have

ph ˝ gq ˝ f “ h ˝ pg ˝ fq

Convention 1.2. We use the notation f : X Ñ Y to mean f P HomCpX,Y q.

Convention 1.3. When the category C is clear from context, we write HompX,Y q for HomCpX,Y q.

Remark 1.4. It is an easy exercise to show the identity morphism for an object is unique.

Example 1.5. In Table 1 we provide a list of common categories.

name of category notation objects morphisms
category of sets Set sets functions
category of groups Grp groups group homomorphisms
category of abelian groups Ab abelian groups group homomorphisms
category of rings Ring rings ring homomorphisms
category of algebras over R AlgR R-algebras R-algebra homomorphisms
category of topological spaces Top topological spaces continuous functions
category of vector spaces over K ModK K-vector spaces K-linear maps
category of modules over R ModR R-modules R-module homomorphisms

TABLE 1. Table of some common categories

Convention 1.6. Unless otherwise specified, by a ring we mean a commutative unital ring, and an
R-algebra over a ring R will always mean a commutative, unital, and associative R-algebra.

Definition 1.7. A subcategory of a category C is a category D such that its objects D Ď C and its
morphisms HomDpX,Y q Ď HomCpX,Y q for any X,Y P D, with the same composition function.
We say D is a full subcategory if further that HomDpX,Y q “ HomCpX,Y q for any X,Y P D.

Definition 1.8. Suppose C,D are categories, their product category C ˆ D is the category where
objects are pairs pX,Y q where X P C and Y P D, and morphisms

HomppX1, Y1q, pX2, Y2qq “ HompX1, X2q ˆ HompY1, Y2q

with element-wise composition.
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Definition 1.9. Let f : X Ñ Y be a morphism in a category then we say f is a
(i) monomorphism or mono if f ˝ g “ f ˝ h implies g “ h for any g, h : Z Ñ X ,

(ii) epimorphism or epi if g ˝ f “ h ˝ f implies g “ h for any g, h : Y Ñ Z
(iii) split monomorphism or split mono if there exists g : Y Ñ X such that g ˝ f “ idX ,
(iv) split epimorphism or split epi if there exists g : Y Ñ X such that f ˝ g “ idY ,
(v) bimorphism if it’s both a monomorphism and an epimorphism,

(vi) isomorphism if it’s both a split monomorphism and a split epimorphism,
(vii) endomorphism if X “ Y ,

(viii) automorphism if it’s both an isomorphism and an endomorphism.

Convention 1.10. For an object X in a category C, we will denote by EndpXq “ HompX,Xq the en-
domorphisms of X , and we will denote by AutpXq the group of automorphisms of X . If there is an
isomorphism f : X Ñ Y in C, we say X and Y are isomorphic and write X – Y .

Remark 1.11. It’s an easy exercise to show split monos (resp. split epis) are monos (resp. epis).
Moreover, suppose C is a category where one can talk about injective and surjective morphisms, in
general, split mono (resp. split epi) is a strictly stronger condition than injective (resp. surjective),
and injective (resp. surjective) is a strictly stronger condition than mono (resp. epi).

Definition 1.12. Define the opposite category Cop of a category C to be the category with the same ob-
jects as C but with its morphisms HomCoppX,Y q “ HomCpY,Xq for X,Y P Cop. For each f : X Ñ Y
in C, we denote by fop : Y Ñ X the corresponding opposite morphism in Cop

Definition 1.13. Let C,D be categories, a covariant functor (or just simply a functor) from C to D,
denoted F : C Ñ D, is the collection of the following data

(i) for each object X P C, an object F pXq P D

(ii) for each morphism f : X Ñ Y in C, a morphism F rf s : F pXq Ñ F pY q, such that
‚ F ridXs “ idF pXq for each X P C,
‚ F rf ˝ gs “ F rf s ˝ F rgs for each f : X Ñ Y and g : Y Ñ Z in C.

A contravariant functor from C to D is a covariant functor F : Cop Ñ D.

Definition 1.14. Suppose C,D,E are categories and F : C Ñ D and G : D Ñ E are functors, we
define their composite functor G ˝ F : C Ñ E as the functor that maps X ÞÑ G pF pXqq for objects
and maps the morphisms by pG ˝ F qrf s “ G rF rf ss for each f : X Ñ Y .

Example 1.15. Let C be a category, then there is the identity functor idC : C Ñ C for C, which maps
each object X P C by idCpXq “ X and each morphism f : X Ñ Y by idCrf s “ f .

Example 1.16. Here are some examples of functors in nature
(i) the functor Grp Ñ Set that maps a group to its underlying set and sends morphisms to

themselves (functor that “forget” data such as this are called forgetful functors)
(ii) the functor p´qˆ : Ring Ñ Grp which sends a ring R to its multiplicative group of units,

and sends a morphism of rings to its restriction on the groups of units,
(iii) the functor GLnp´q : Ring Ñ Grp which sends a ring R to GLnpRq the group of invertible

matrices in R, and send a morphism to the obvious entry-wise group homomorphism.
(iv) the functor p´ bR Mq : ModR Ñ ModR for an R-module M , which sends a R-module N

to N bR M and a morphism f : N Ñ P to f b idM ,
(v) the contravariant functor p´q˚ : Modop

R Ñ ModR for a ring R which sends an R-module
M to its dual module M˚, and a morphism fop :M Ñ N to f˚ : N˚ Ñ M˚ by g ÞÑ g ˝ f ,

(vi) the functor π1p´q : PCTop Ñ Grp where PCTop is the full subcategory of Top of path
connected spaces, which sends a space X to its fundamental group π1pXq and a continuous
map f : X Ñ Y to its induced map on fundamental groups f˚ : π1pXq Ñ π1pY q.
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Definition 1.17. We say that the category C is locally small if HompX,Y q is a set for all X and Y , and
small if it is locally small and the class of objects of C is also a set.

Definition 1.18. Suppose C is locally small and X P C. The hom-functor of X is the functor

HompX,´q : C Ñ Set Y ÞÑ HompX,Y q pf : Y Ñ Zq ÞÑ pf ˝ ´q

where pf ˝ ´q : HompX,Y q Ñ HompX,Zq maps g ÞÑ f ˝ g. There is also a contravariant version

Homp´, Xq : Cop Ñ Set Y ÞÑ HompY,Xq pfop : Z Ñ Y q ÞÑ p´ ˝ fq

where p´ ˝ fq : HompZ,Xq Ñ HompY,Xq maps g ÞÑ g ˝ f . We also define the functor

Homp´,´q : Cop ˆ C Ñ D pX,Y q ÞÑ HompX,Y q

and for a morphism pfop : X1 Ñ X2, g : Y1 Ñ Y2q : pX1, Y1q Ñ pX2, Y2q, we map it to

pg ˝ ´ ˝ fq : HompX1, Y1q Ñ HompX2, Y2q h ÞÑ g ˝ h ˝ f

Remark 1.19. Suppose C is locally small and X P C. We also use the notations

H X :“ HompX,´q HX :“ Homp´, Xq H :“ Homp´,´q

for the covariant, contravariant, and bivariate hom functors.

Definition 1.20. Let I,C be categories, a diagram indexed by I in C is simply a functor F : I Ñ C.
We say that the diagram F commutes if for each X,Y P I, if f, g P HompX,Y q then F rf s “ F rgs.

Example 1.21. We represent a diagram F : I Ñ C as a directed multigraph in the same shape as
the index category I, and label the vertices and edges with their images of F in C. For example,

A B

C D

f

h g

e

and this square commutes if and only if g ˝ f “ e ˝ h.

Definition 1.22. Let C,D be categories, and F ,G : C Ñ D be functors, a natural transformation from
F to G , denoted φ : F ñ G , is the data of a morphism φX : F pXq Ñ G pXq for each X P C such
that the following diagram commutes

F pXq G pXq

F pY q G pY q

φX

F rf s G rf s

φY

for all morphisms f : X Ñ Y in C. In other words, G rf s ˝ φX “ φY ˝ F rf s for all f : X Ñ Y in C.
Moreover, if φX is an isomorphism for each X P C, we say φ is a natural isomorphism.

Definition 1.23. Let C,D be categories, and let E ,F ,G : C Ñ D be functors. Suppose φ : E ñ F
and ψ : F ñ G are natural transformations. We define their (vertical) composition ψ ˝ φ : E ñ G as
the natural transformation pψ ˝ φqX “ ψX ˝ φX for every X P C.

Definition 1.24. Let C,D,E be categories and F1, G1 : C Ñ D and F2, G2 : D Ñ E functors. Let
φ : F1 ñ G1 and ψ : F2 ñ G2 be natural transformations, then define their horizontal composition
ψ ˚ φ : F2 ˝ F1 ñ G2 ˝ G1 as pψ ˚ φqX “ ψG1pXq ˝ F2rφXs.

Example 1.25. Let C,D be categories and F : C Ñ D a functor, then there is a identity natural
transformation idF : F ñ F given by mapping pidF qX “ idF pXq for each X P C.
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Example 1.26. Here are some examples of natural transformations
(i) let p´qˆ,GLn : Ring Ñ Grp be functors defined in Example 1.16, then we have the natural

transformation det : GLnp´q ñ p´qˆ where detR : GLnpRq Ñ Rˆ is the determinant,
(ii) let p´q˚˚ “ pp´q˚q˚ : ModK Ñ ModK be the composition of the dual space functor with

itself, then there is natural transformation eval : idModK
ñ p´q˚˚ given by evalV : V Ñ V ˚˚

where evalV pvqpfq “ fpvq is the evaluation map; it is a natural isomorphism if we replace
ModK with FVectK , its full subcategory of finite dimensional vector spaces,

(iii) let p´q˚ bR M : Modop
R Ñ ModR be the composition of p´q˚ with p´q bR M defined in

Example 1.16, for a ring R and an R-module M ; let Homp´,Mq : Modop
R Ñ ModR be the

contravariant hom-functor valued in ModR (with the natural module structure inherited
from M ), there is a natural isomorphism φ : p´q˚ bRM ñ Homp´,Mq where for R-module
N , the map φN : N˚ bR M Ñ HompN,Mq is given by φN pf bmqpnq “ fpnqm,

Definition 1.27. Let C,D be categories, the functor category from C to D, denoted FunpC,Dq, is
the category where objects are functors F : C Ñ D, morphisms are natural transformations, and
composition is given by vertical composition.

Remark 1.28. Natural isomorphisms are precisely the isomorphisms in the functor category.

Definition 1.29. Let C,D be categories, a functor F : C Ñ D is called an equivalence if there is a
functor G : D Ñ C such that there are natural isomorphisms η : idC ñ G ˝ F and ε : F ˝G ñ idD.
If there is an equivalence between C and D, we say they are equivalent and write C » D. Moreover,
we call G the quasi-inverses of F and call the pair of functors an equivalence of categories.

Example 1.30. Here are some examples of equivalent categories
(i) Ab » ModZ

(ii) GalopL{K » SubGrpGalpL{Kq where GalL{K is the category of intermediate extensions of a
Galois extension L{K with injections as morphisms, and SubGrpGalpL{Kq is the category of
subgroups of GalpL{Kq with injective homomorphisms as morphisms.

(iii) Top » Kur where Kur is the category where objects are sets X with a Kuratowski closure
operator cl : 2X Ñ 2X and morphisms are maps preserving the closure.

Definition 1.31. Suppose C,D are categories and F : C Ñ D is a functor. For each X,Y P C, let

FX,Y : HompX,Y q Ñ HompF pXq,F pY qq where f ÞÑ F rf s

then we say that F is
(i) faithful if FX,Y is injective for all X,Y P C,

(ii) full if FX,Y is surjective for all X,Y P C,
(iii) fully faithful if FX,Y is bijective for all X,Y P C,

Moreover, call F essentially surjective if for all Y P D exists X P C such that F pXq – Y in D.

Theorem 1.32. A functor is an equivalence iff it is fully faithful and essentially surjective.

Proof. Technical. See [KS06, Thm. 1.3.13, p. 22]. □

Definition 1.33. Let C be a locally small category. Define pC :“ FunpCop,Setq and qC :“ FunpC,Setq

as its categories of presheaves and copresheaves. The Yoneda embedding is the functor

H‚ : C Ñ pC X ÞÑ HX “ Homp´, Xq

and for f : Y Ñ Z, define pH‚rf sqX : HompX,Y q Ñ HompX,Zq as pf ˝ ´q for each X P C. Dually,
the co-Yoneda embedding is the contravariant functor

H ‚ : Cop Ñ qC X ÞÑ H X “ HompX,´q

and for fop : Z Ñ Y , define pH‚rf sqX : HompZ,Xq Ñ HompY,Xq as p´ ˝ fq for each X P C.
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Definition 1.34. Let C be a locally small category. Define the global sections functor as

Γp‚,´q : Cop ˆ pC Ñ Set pX,F q ÞÑ F pXq

and sending a morphism pfop : Y Ñ X,φ : F ñ G q to the morphism φX ˝ F rfops “ G rfops ˝ φY .
Dually, we define the global sections cofunctor, abusing notation, as

Γp‚,´q : C ˆ qC Ñ Set pX,F q ÞÑ F pXq

and sending a morphism pf : X Ñ Y, φ : F ñ G q to the morphism φY ˝ F rf s “ G rf s ˝ φX .

Definition 1.35. Let C be a locally small category. Define the functor

Hom
pC
pH‚,´q : Cop ˆ pC Ñ Set pX,F q ÞÑ Hom

pC
pHX ,F q

and sending a morphism pfop : Y Ñ X,φ : F ñ G q to

pφ ˝ ´ ˝ H‚rf sq : Hom
pC
pHY ,F q Ñ Hom

pC
pHX ,G q ψ ÞÑ φ ˝ ψ ˝ H‚rf s

Dually, define the functor

Hom
qC
pH ‚,´q : C ˆ qC Ñ Set pX,F q ÞÑ Hom

qC

`

H X ,F
˘

and sending the morphism pf : X Ñ Y, φ : F ñ G q to

pφ ˝ ´ ˝ H ‚rfopsq : Hom
qC

`

H X ,F
˘

Ñ Hom
qC

`

H Y ,G
˘

ψ ÞÑ φ ˝ ψ ˝ H ‚rfops

One can view Hom
pC
pH‚,´q as the composition of H‚ with the first factor of Hom

pC
p´,´q, and also

view Hom
qC
pH ‚,´q similarly as the composition of H ‚ with the first factor of Hom

qC
p´,´q.

Lemma 1.36 (Yoneda). Let C be a locally small category. There are natural isomorphisms

Hom
qC
pH ‚,´q Γp‚,´q

Φ

Ψ

which are inverses of each other.

Proof. Let X P C and let F : C Ñ Set be a functor. For a natural transformation φ : H X Ñ F and
a morphism f : X Ñ Y in C, the diagram given by

HomCpX,Xq F pXq

HomCpX,Y q F pY q

φX

pf˝´q F rf s

φY

commutes. Thus φY ˝ pf ˝ ´q “ F rf s ˝ φX . Evaluating at idX on both sides yields

φY pfq “ F rf spφXpidXqq

therefore the natural transformation φ is completely determined by u “ φXpidXq. Therefore, let

Φ : Hom
qC
pH ‚,´q ñ Γp‚,´q ΦpX,F qpφq “ φXpidXq

and, by the same identity, the inverse of Φ is naturally

Ψ : Γp‚,´q ñ Hom
qC
pH ‚,´q ΨpX,F qpuq “ φ

where φY : HompX,Y q Ñ F pY q is given by φY pfq “ pF rf sqpuq, for each Y P C. It is not hard for
the reader to verify that indeed Ψ ˝ Φ “ idHom

qC
pH ‚,´q and Φ ˝ Ψ “ idΓp‚,´q. □
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Remark 1.37. The preceding Lemma 1.36 is known as the fundamental theorem of category theory.

Lemma 1.38 (co-Yoneda). Let C be a locally small category. There are natural isomorphisms

Hom
pC
pH‚,´q Γp‚,´q

Θ

Π

which are inverses of each other.

Proof. Completely symmetric to Lemma 1.36. □

Theorem 1.39. Let C be a locally small category, then the Yoneda and co-Yoneda embeddings

H‚ : C Ñ pC and H ‚ : Cop Ñ qC

are fully faithful.

Proof. Let X,Y P C, then by Lemma 1.36, for any functor F : C Ñ Set, there is a map

ΦpX,F q : HomqC
pH X ,F q Ñ F pXq

which, by Remark 1.28, is a bijection, since Φ is a natural isomorphism. Let F “ H Y , then

ΦpX,HY q : HomqC
pH X ,H Y q Ñ H Y pXq “ HomCpY,Xq

is a bijection. This gives the inverse for the map

HomCoppX,Y q
H ‚

ÝÝÑ Hom
qC
pH X ,H Y q

Thus H ‚ is fully faithful. For the dual H‚, the proof is completely symmetric. □

Lemma 1.40. Let C,D be categories and F : C Ñ D a functor. Let D : I Ñ C be a commutative diagram
in C, then F ˝ D : I Ñ D is a commutative diagram in D.

Proof. Straightforward by definition. □

Lemma 1.41. Let C,D be categories and F : C Ñ D a fully faithful functor, then the morphism F rf s :
F pXq Ñ F pY q is an isomorphism in D if and only if f : X Ñ Y is an isomorphism in C.

Proof. Forward direction is an easy consequence of Lemma 1.40 applied to the diagram

X Y

f

f´1

For the backwards direction, by fullness of F , choose g : Y Ñ X with F rgs “ F rf s´1. Then we
have F rf ˝ gs “ F rf s ˝ F rgs “ idF pXq so by faithfulness of F , we have f ˝ g “ idX . By similar
arguments, we have g ˝ f “ idY , so g is the inverse of f . Therefore f is an isomorphism in C. □

Theorem 1.42. Let C be a locally small category, then for a morphism f : X Ñ Y in C, TFAE
(i) f : X Ñ Y is an isomorphism in C,

(ii) H‚rf s : HX Ñ HY is an isomorphism in pC,
(iii) H ‚rfops : H Y Ñ H X is an isomorphism in qC,

Proof. Striaghtforward by Theorem 1.39 and Lemma 1.41. □
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2. ALGEBRAIC GROUPS

Throughout the text, unless specified otherwise, fix a ring R, which we shall call our ground ring.

Convention 2.1. We assume rings are commutative and unital, and algebras are associative, commu-
tative, and unital. In particular, in our convention an algebra A over a ring R is equivalent to the
data of a ring A with a ring map φ : R Ñ A, viewing the scalar multiplication as r ¨ a “ φprqa. We
will use this equivalence frequently and often implicitly.

Definition 2.2. A R-functor is a functor

X : AlgR Ñ Set

and the category of R-functors is the functor category FunR :“ FunpAlgR,Setq.

Definition 2.3. Suppose A is a R-algebra, its spectrum is the R-functor

SpecpAq :“ HomAlgR
pA,´q : AlgR Ñ Set

An affine R-scheme is the spectrum of a R-algebra. The affine n-space is the affine R-scheme

An
R :“ SpecpRrx1, . . . , xnsq

The category AffR of affine R-schemes is the full subcategory of all affine R-schemes of FunR.

Remark 2.4. The notion of affine R-schemes generalizes the notion of affine varieties. For readers
who have experience in algebraic geometry, you might have been taught that an affine K-variety
for some algebraically closed field K is a subset of Kn for some n given by the vanishing set of
some polynomials f1, . . . , fm P Krx1, . . . , xns, that is, the set

tpx1, . . . , xnq P Kn : f1px1, . . . , xnq “ ¨ ¨ ¨ “ fmpx1, . . . , xnq “ 0u

For our purposes, however, we take a functorial perspective to varieties. To see what this is about,
we first make the important observation that the above set can be naturally identified as the set

XpKq “ HomAlgK

ˆ

Krx1, . . . , xns

pf1, . . . , fmq
,K

˙

where X “ Spec

ˆ

Krx1, . . . , xns

pf1, . . . , fmq

˙

Namely, each ϕ P XpKq can be identified with pϕpx1q, . . . , ϕpxnqq P Kn. Similarly, for polynomials
f1, . . . , fm P Rrx1, . . . , xns, the set XpSq for an R-algebra S can be identified as the set

tpx1, . . . , xnq P Sn : f1px1, . . . , xnq “ ¨ ¨ ¨ “ fmpx1, . . . , xnq “ 0u

where f1, . . . , fm are identified as their images along the natural map Rrx1, . . . , xns Ñ Srx1, . . . , xns

induced by the structure map R Ñ S. Thus, what the spectrum of a R-algebra encodes is the
vanishing sets of a set of polynomials over each R-algebra.

Definition 2.5. Suppose that X “ SpecpAq is an affine R-scheme where A is a R-algebra. Let S be
another R-algebra then we call the set

XpSq “ HomAlgR
pA,Sq

the S-points of X . When S is a field, it is also called the S-rational points of X .

Remark 2.6. Recall that a R-algebra A is said to be finitely generated if there is a surjective map
Rrx1, . . . , xns Ñ A, or equivalently A “ Rrx1, . . . , xns{I for some ideal I Ď Krx1, . . . , xns. If R is
noetherian, that is, each of its ideals is finitely generated, then by Hilbert’s basis theorem, so is
Rrx1, . . . , xns, whence the finitely generated R-algebras are of the form Rrx1, . . . , xns{pf1, . . . , fmq.

Remark 2.7. One huge advantage that affine schemes provide is their treatment of nilpotence. The
vanishing set of a polynomial f P Krx1, . . . , xns for K a field is the same as that of f2. However,

SpecpKrx1, . . . , xns{pfqq ‰ SpecpKrx1, . . . , xns{pf2qq

with the right hand side being thought of as having an infinitesimal thickening or nilpotent thickening.



LINEAR ALGEBRAIC GROUPS AND REPRESENTATION THEORY 9

Remark 2.8. Let S be a R-algebra, then A1
RpSq “ HomAlgR

pRrxs, Sq is canonically a R-algebra by

pϕ` ψqpfq “ ϕpfq ` ψpfq

pϕψqpfq “ ϕpfqψpfq

prϕqpfq “ rϕpfq

for each ϕ, ψ P A1
RpSq and r P R, where f P Rrxs. Note that naturally A1

RpSq – S as R-algebras.

Definition 2.9. For an affine R-scheme X : AlgR Ñ Set, its coordinate ring (resp. coordinate algebra)
is the ring (resp. R-algebra)

OpXq :“ HomAffR
pX,A1

Rq

with the algebraic operations given as follows: given f, g P OpXq and r P R

pf ` gqSpϕq “ fSpϕq ` gSpϕq

pfgqSpϕq “ fSpϕqfSpϕq

prfqSpϕq “ rfSpϕq

where ϕ P XpSq, for each R-algebra S. Moreover, define the contravariant functor

O : Affop
R Ñ AlgR O “ HomAffR

p´,A1
Rq

where for a morphism φ : X Ñ Y of affine R-schemes, the induced map

Orφops “ φ# : OpY q Ñ OpXq ψ ÞÑ ψ ˝ φ

is called the induced regular map of φ.

Definition 2.10. Define the contravariant functor

Spec : Algop
R Ñ AffR A ÞÑ SpecpAq

where for each morphism φ : A Ñ B of R-algebras, there is the induced natural transformation

φ˚ : SpecpBq Ñ SpecpAq

called the pullback given by

φ˚
S : SpecpBqpSq Ñ SpecpAqpSq ψ ÞÑ ψ ˝ φ

for each R-algebras S.

Theorem 2.11. The pair of functors Spec and O is an equivalence of categories

Algop
R AffR

Spec

O

Proof. Suppose A is a R-algebra, then applying Lemma 1.36, namely, the Yoneda lemma

OpSpecpAqq “ HomAffR
pH A,A1

Rq – A1
RpAq – A

where we leave it to the reader to check that the relevant bijection is an isomorphism of K-algebras.
Conversely, let X “ SpecpAq, then there is an induced natural isomorphism of hom-functors

SpecpOpXqq “ HomAlgR
pOpSpecpAqq,´q – HomAlgR

pA,´q “ X

Therefore Spec and O are quasi-inverses of each other. □

Definition 2.12. A R-group functor is a functor

G : AlgR Ñ Grp

The category of R-group functors is the functor category GFunR “ FunpAlgR,Grpq.



10 YUNHAI XIANG

Definition 2.13. An affine R-group scheme is a R-group functor G : AlgR Ñ Grp such that its
composition with the forgetful functor to Set

rG : AlgR
G
ÝÑ Grp Ñ Set

is an affine R-scheme. Further, we say an affine R-group scheme G is an (affine) algebraic group
over R if rG is of finite type, i.e. it is the spectrum of a finitely generated R-algebra. Define GAffR

and GAlgR, the categories of affine R-group schemes and (affine) algebraic groups over R, as full
subcategories of GFunR respectively.

Convention 2.14. In this text, “algebraic group” always means affine algebraic group. However,
it is important to keep in mind that there are things like abelian varieties which are considered
algebraic groups in broader context but are by no means affine.

Example 2.15. Here are some examples of algebraic groups over R,
(i) the additive group

Ga : AlgR Ñ Grp S ÞÑ pS,`q

where ĂGa – A1
R,

(ii) the multiplicative group, also known as the 1-torus,

Gm : AlgR Ñ Grp S ÞÑ Sˆ

where ĄGm – SpecpRrx, x´1sq,
(iii) the multiplicative group of n-th roots of unity,

µn : AlgR Ñ Grp S ÞÑ ta P Sˆ : an “ 1u

where Ăµn – SpecpRrxs{pxn ´ 1qq,

Definition 2.16. Let S a R-algebra. If M is an R-module, define the base change (or extension of
scalars) of M from R to S as the S-module M bR S. If M is a S-module, define its Weil restriction
(or restriction of scalars) from S to R as the R-module ResS{RM with the same additive group as
M with scalar multiplication given by rm “ φprqm for r P R and m P M where φ : R Ñ S is the
structure map. These define functors p´q bR S : ModR Ñ ModS and ResS{R : ModS Ñ ModR.
We define the base change and Weil restrictions for algebras in the exact same way, giving rise to
functors p´q bR S : AlgR Ñ AlgS and ResS{R : AlgS Ñ AlgR.

Convention 2.17. Let S a R-algebra. If M is a R-module, we also use the notation MS “ M bR S. If
M is an S-module, we write MR “ ResS{RM .

Convention 2.18. Let X “ pxi,jq1ďi,jďn be a n-by-n matrix of indeterminants. For any ring R, let

RrXs :“ Rrx1,1, x1,2, . . . , xn,ns

Abusing notation, identify X “ pxi,jq1ďi,jďn P MnpRrXsq. For any F “ pfi,jq1ďi,jďn P MnpRrXsq,
denote detF :“

ř

σPSn
sgnpσq

śn
i“1 fi,σpiq P RrXs and trpAq :“

řn
i“1 fi,i P RrXs. Moreover, we

denote the ideal pF q :“ pf1,1, f1,2, . . . , fn,nq Ď RrXs.

Example 2.19. Here are some more examples of algebraic groups over R,
(i) the general linear group of a free module V over R of rank n,

GLV : AlgR Ñ Grp S ÞÑ AutModS
pVSq “ AutModS

pV bR Sq

where ĆGLV – Spec

ˆ

RrM srys

py detpMq ´ 1q

˙

where M “ pmi,jq1ďi,jďn is an indeterminant matrix,
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(ii) the special linear group of a free module V over R of rank n,

SLV : AlgR Ñ Grp S ÞÑ Ker
´

GLV pSq
detS
ÝÝÝÑ Sˆ

¯

where ĄSLV – Spec

ˆ

RrM s

pdetpMq ´ 1q

˙

where M “ pmi,jq1ďi,jďn is an indeterminant matrix.

Convention 2.20. Let V be a free R-module of rank n. We denote GLn :“ GLV and SLn :“ SLV .

Definition 2.21. Let V be a module over an arbitrary ring R. Suppose σ : R Ñ R is a ring map
satisfying σ ˝ σ “ id, which we call the involution map. A function

B : V ˆ V Ñ R

is called form on V , and is said to be

(i) left linear if Bprv ` u,wq “ rBpv, wq `Bpu,wq for all r P R and u, v, w P V ,
(ii) left σ-linear if Bprv ` u,wq “ σprqBpv, wq `Bpu,wq for all r P R and u, v, w P V ,

(iii) right linear if Bpv, rw ` uq “ rBpv, wq `Bpv, uq for all r P R and u, v, w P V ,
(iv) bilinear if it is left linear and right linear,
(v) σ-sesquilinear if it is left σ-linear and right linear,

(vi) symmetric if Bpv, wq “ Bpw, vq for all v, w P V ,
(vii) σ-symmetric if Bpv, wq “ σpBpw, vqq for all v, w P V ,

(viii) alternating if Bpv, vq “ 0 for all v P V ,
(ix) nondegenerate if Bpv, wq “ 0 for all v P V implies w “ 0,
(x) orthogonal if it is a bilinear, symmetric, and nondegenerate,

(xi) symplectic if it is a bilinear, alternating, and nondegenerate,
(xii) σ-Hermitian if it is σ-sesquilinear, σ-symmetric, and nondegenerate.

Definition 2.22. Let B1 : V ˆ V Ñ R and B2 : V ˆ V Ñ R be forms on a module V over an ar-
bitrary ring R. We say B1 is equivalent (or isometric) to B2 if there exists an invertible linear map
P : V Ñ V , which we call an isometry, satisfying B1pv, wq “ B2pP pvq, P pwqq for all v, w P V .

Example 2.23. Let V “ Rn be the free module of rank n over a ring R with basis e1, . . . , en. The
standard inner product x¨, ¨y : V ˆ V Ñ R given by xv, wy “ v1w1 ` ¨ ¨ ¨ ` vnwn for each v, w P V ,
where v “ v1e1 ` ¨ ¨ ¨ ` vnen and w “ w1e1 ` ¨ ¨ ¨ ` wnen, is an orthogonal form on V .

Example 2.24. Let V “ W ‘W_ over a ring R where W “ Rn is the free module of rank n, then
the hyperbolic form B : V ˆ V Ñ R given by ppv, ϕq, pw,ψqq ÞÑ ϕpwq ` ψpvq is an orthogonal form.

Example 2.25. Let L | K be a finite separable field extension. The form TrL{K : Lˆ L Ñ K given
by pa, bq ÞÑ trL{Kpabq, where trL{K is the field trace, is an orthogonal form called the trace form.

Example 2.26. Recall that a quadratic form on a free module V “ Rn of rank n over R is a quadratic
homogeneous polynomial map q : V Ñ R

qpx1, . . . , xnq “
ÿ

1ďi,jďn

ai,jxixj

Recall the polar form bq : V ˆ V Ñ R of a quadratic form q : V Ñ R is the symmetric bilinear form

bqpx, yq “ qpx` yq ´ qpxq ´ qpyq

and we say q is nonsingular if bq is nondegenerate. Suppose 2 is invertible in R, then we can define
the polarization Bq “ 1

2bq of q, which satisfies qpxq “ Bqpx, xq. Therefore, when 2 is invertible in R,
a quadratic form q corresponds uniquely to a symmetric bilinear form Bq.
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Example 2.27. Let V “ R2n be the free module of rank 2n over a ring R, the form ω : V ˆ V Ñ R
given by ωpx, yq “ xTJy, where J P M2npRq is the matrix

J “

ˆ

0 In
´In 0

˙

with In the n-by-n identity matrix, is a symplectic form called the standard symplectic form.

Definition 2.28. A quadratic étale algebra E over a ring R is a R-algebra such that

E – Rrxs{px2 ` bx` cq

for some b, c P R where b2 ´ 4c P Rˆ. Define its involution as the unique nontrivial automorphism

σ : E Ñ E x ÞÑ ´b´ x

which satisfies σ ˝ σ “ idE and fixes R.

Example 2.29. Let E be a quadratic étale algebra over R with involution σ : E Ñ E.

Example 2.30. scaled Hermitian trace form

Proposition 2.31. Let B : V ˆ V Ñ R be a bilinear form. If B is alternating then it is antisymmetric, i.e.
Bpx, yq “ ´Bpy, xq for x, y P V . Conversely, if B is antisymmetric and 2 P Rˆ, then B is alternating.

Proof. Suppose B is alternating. For v, w P V , we have

0 “ Bpv ` w, v ` wq “ Bpv, vq `Bpv, wq `Bpw, vq `Bpw,wq “ Bpv, wq `Bpw, vq

Thus Bpv, wq “ ´Bpw, vq for all v, w P V . Conversely, suppose 2 P Rˆ and B is antisymmetric then
for all v P V we have Bpv, vq “ ´Bpv, vq so 2Bpv, vq “ 0, thus Bpv, vq “ 0. □

Proposition 2.32. A finite rank free module admitting a symplectic form is of even rank. All symplectic
forms are isometric.

Proof. Let V be a finite rank free module over a ring R with symplectic form P : V ˆ V Ñ R. □

Definition 2.33. Let V “ Rn be the free module of rank n over a ring R with an ordered basis
e “ pe1, . . . , enq. Let B : V ˆ V Ñ R be a form, then the Gram matrix of B with respect to ordered
basis e, is the matrix rBse :“ pBpei, ejqq1ďi,jďn P MnpRq.

Proposition 2.34. Let V “ Rn be the free module of rank n over a ring R with an ordered basis e. Suppose
B : V ˆ V Ñ R is a form. Let σ : R Ñ R be an involution. We have the following.

(i) rBs˚
e “ rBse iff B is σ-sesquilinear and σ-symmetric,

(ii) rBsTe “ rBse iff B is bilinear and symmetric,
(iii) rBsTe “ ´rBse iff B is bilinear and alternating,
(iv) Bpx, yq “ rxs˚

e rBseryse for all x, y P V , iff B is σ-sesquilinear,
(v) Bpx, yq “ rxsTe rBseryse for all x, y P V , iff B is bilinear,

(vi) rBsPe “ rP s˚
e rBserP se for any invertible linear map P : V Ñ V , iff B is σ-sesquilinear,

(vii) rBsPe “ rP sTe rBserP se for any invertible linear map P : V Ñ V , iff B is bilinear,
(viii) B is nondegenerate iff its Gram matrix rBse is invertible,

where M˚ :“ pσpmj,iqq P MkˆℓpRq denotes the σ-conjugate transpose of M “ pmi,jq P MℓˆkpRq.

Proof. □

Remark 2.35.

Definition 2.36. Let R be an arbitrary ring, suppose S is a R-algebra, V is a module over R, and
B : V ˆ V Ñ R a bilinear form on V . The base change of B from R to S is the bilinear form

BS : VS ˆ VS Ñ S pv b r, w b sq ÞÑ Bpv, wqrs

on VS “ V bR S, extended bilinearly.
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Definition 2.37. Base change for

Example 2.38. Let V be a free R-module of rank n with an orthogonal form B : V ˆ V Ñ R. Here
are some more examples of algebraic groups over R.

(i) the orthogonal group of the pair pV,Bq

OV,B : AlgR Ñ Grp

where for each R-algebra S

OV,BpSq “ tg P AutModS
pVSq : @v, w P V, BSpgv, gwq “ BSpv, wqu

where ĆOV,B “ Spec

ˆ

RrM s

pMTBM ´Bq

˙

where M “ pmi,jq1ďi,jďn is an indeterminant matrix

(ii) the special orthogonal group of the pair pV,Bq

(iii) the orthogonal semilitude group
(iv) the special orthogonal semilitude group

Example 2.39. Let V be a free R-module of rank 2n with an symplectic form P : V ˆ V Ñ R. Here
are some more examples of algebraic groups over R.

(i) the symplectic group of the pair pV, P q

SpV,P : AlgR Ñ Grp

where for each R-algebra S

SpV,P pSq “ tg P AutModS
pVSq : @v, w P V, BSpgv, gwq “ BSpv, wqu

where ČSpV,P “ Spec

ˆ

RrM s

pMTBM ´Bq

˙

where M “ pmi,jq1ďi,jďn is an indeterminant matrix

(ii) the symplectic semilitude group

Example 2.40. Unitary groups

Example 2.41. Pin group, Spin group, GPin, GSpin

Example 2.42. Exceptional groups
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3. BASIC PROPERTIES

sheaf of regular functions dimension connectedness, irreducibility products, semidirect product,
identity component, open/closed subgroups, actions, kernel, image, generators

4. HOPF ALGEBRAS

5. JORDAN DECOMPOSITION

6. LIE ALGEBRAS

7. ROOT SYSTEMS AND ROOT DATUM

8. ISOMORPHISM AND EXISTANCE THEOREMS

9. REPRESENTATIONS OF SPLIT REDUCTIVE GROUPS

10. TANNAKIAN DUALITY

11. TORIC VARIETIES

12. FLAG VARIETIES

13. SPHERICAL VARIETIES



REFERENCES 15

REFERENCES

[KS06] Masaki Kashiwara and Pierre Schapira. Categories and Sheaves. Vol. 332. Grundlehren der
Mathematischen Wissenschaften. Berlin: Springer-Verlag, 2006, pp. x+497. ISBN: 978-3-540-
27949-5. DOI: 10.1007/3-540-27950-4.

https://doi.org/10.1007/3-540-27950-4

	1. Categories and Functors
	2. Algebraic Groups
	3. Basic Properties
	4. Hopf Algebras
	5. Jordan Decomposition
	6. Lie Algebras
	7. Root Systems and Root Datum
	8. Isomorphism and Existance Theorems
	9. Representations of Split Reductive Groups
	10. Tannakian Duality
	11. Toric Varieties
	12. Flag Varieties
	13. Spherical Varieties
	References

