LINEAR ALGEBRAIC GROUPS AND REPRESENTATION THEORY

YUNHAI XIANG

CONTENTS

Categories and Functors

Algebraic Groups

Basic Properties

Hopf Algebras

Jordan Decomposition

Lie Algebras

Root Systems and Root Datum
Isomorphism and Existance Theorems
. Representations of Split Reductive Groups
10. Tannakian Duality

11. Toric Varieties

12.  Flag Varieties

13.  Spherical Varieties

References

© 0N U N e

Date: January 23, 2026.

14
14
14
14
14
14
14
14
14
14
14
15



2 YUNHAI XIANG

1. CATEGORIES AND FUNCTORS

We start with a crash course in category theory. By a class we mean a collection of sets, which is
not necessarily a set itself, such as the class of all sets. The notion of a category generalizes the idea
of a class of structures with structure perserving maps between them.

Definition 1.1. A category C is the data of

(1) a class of objects, also denoted as C
(if) for each pair of objects X,Y € C, a class Home(X,Y') of morphisms from X to Y, where we
call X the domain (or source) of f and Y the codomain (or target) of f
(iii) for each triple of object X,Y, Z € C, a composition function

Home(Y, Z) x Home(X,Y) — Home(X, Z)
(fi9) = fog

such that the following axioms are satisfied
o identity axiom: for each X € C, there exists an identity morphism idx € Home (X, X)) such
that for all Y, Z € € and for all f € Home(X,Y') and g € Home(Z, X) we have

foidy =f and idxog=gyg

e associativity axiom: for each quadruple of objects X,Y, Z, W € € and f € Home(X,Y),
g € Home(Y, Z), and h € Home(Z, W), we have

(hog)of=ho(gof)
Convention 1.2. We use the notation f : X — Y to mean f € Home(X,Y).
Convention 1.3. When the category C is clear from context, we write Hom(X,Y") for Home (X, Y').
Remark 1.4. It is an easy exercise to show the identity morphism for an object is unique.

Example 1.5. In Table 1 we provide a list of common categories.

name of category notation objects morphisms
category of sets Set sets functions

category of groups Grp groups group homomorphisms
category of abelian groups Ab abelian groups group homomorphisms
category of rings Ring rings ring homomorphisms
category of algebras over R Algp R-algebras R-algebra homomorphisms
category of topological spaces Top | topological spaces continuous functions
category of vector spaces over K | Mody | K-vector spaces K-linear maps
category of modules over R Modpgr R-modules R-module homomorphisms

TABLE 1. Table of some common categories

Convention 1.6. Unless otherwise specified, by a ring we mean a commutative unital ring, and an
R-algebra over a ring R will always mean a commutative, unital, and associative R-algebra.

Definition 1.7. A subcategory of a category C is a category D such that its objects D < € and its
morphisms Homqp (X, Y) € Home(X,Y) for any X,Y € D, with the same composition function.
We say D is a full subcategory if further that Homqp (X, Y) = Home(X,Y) for any X,Y € D.

Definition 1.8. Suppose C, D are categories, their product category € x D is the category where
objects are pairs (X,Y’) where X € Cand Y € D, and morphisms

HOHI((Xl,Yl), (XQ,YQ)) = HOHI(Xl,XQ) X Hom(Yl,Yg)

with element-wise composition.
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Definition 1.9. Let f : X — Y be a morphism in a category then we say f is a

(1) monomorphism or mono if f o g = f o himplies g = hforany g,h: Z — X,
(if) epimorphism or epiif go f = ho f implies g = hforany g,h: Y — Z
(iii) split monomorphism or split mono if there exists g : Y — X such thatgo f = idy,
(iv) split epimorphism or split epi if there exists g : Y — X such that f o g = idy,
(v) bimorphism if it’s both a monomorphism and an epimorphism,
(vi) isomorphism if it’s both a split monomorphism and a split epimorphism,
(vii) endomorphismif X =Y,
(viii) automorphism if it’s both an isomorphism and an endomorphism.

Convention 1.10. For an object X in a category C, we will denote by End(X) = Hom(X, X) the en-
domorphisms of X, and we will denote by Aut(X) the group of automorphisms of X. If there is an
isomorphism f : X — Y in C, we say X and Y are isomorphic and write X >~ Y.

Remark 1.11. It’s an easy exercise to show split monos (resp. split epis) are monos (resp. epis).
Moreover, suppose C is a category where one can talk about injective and surjective morphisms, in
general, split mono (resp. split epi) is a strictly stronger condition than injective (resp. surjective),
and injective (resp. surjective) is a strictly stronger condition than mono (resp. epi).

Definition 1.12. Define the opposite category C°P of a category C to be the category with the same ob-
jects as € but with its morphisms Homeop (X,Y) = Home(Y, X) for X,Y € C°P. Foreach f : X - Y
in €, we denote by f°P : Y — X the corresponding opposite morphism in C°P

Definition 1.13. Let C, D be categories, a covariant functor (or just simply a functor) from C to D,
denoted .7 : € — D, is the collection of the following data

(i) for each object X € C, an object .# (X) € D

(if) for each morphism f : X — Y in €, a morphism .#[f] : #(X) — .Z#(Y), such that
o Jlidx] = idz(x) for each X € C,
o Z(fogl=F|[f]loF|g]foreachf: X -Yandg:Y — ZinC.

A contravariant functor from C to D is a covariant functor .% : C°? — D.

Definition 1.14. Suppose C, D, € are categoriesand .# : C - Dand ¢4 : D — €& are functors, we
define their composite functor 4 o . : € — € as the functor that maps X — ¥ (.# (X)) for objects
and maps the morphisms by (¢ o #)[f] = 4[.#[f]] foreach f : X - Y.

Example 1.15. Let C be a category, then there is the identity functor ide : € — C for €, which maps
each object X € C by ide(X) = X and each morphism f : X — Y by ide[f] = f.

Example 1.16. Here are some examples of functors in nature

(i) the functor Grp — Set that maps a group to its underlying set and sends morphisms to

themselves (functor that “forget” data such as this are called forgetful functors)

(if) the functor (—)* : Ring — Grp which sends a ring R to its multiplicative group of units,
and sends a morphism of rings to its restriction on the groups of units,

(ifi) the functor GL,(—) : Ring — Grp which sends a ring R to GL,,(R) the group of invertible
matrices in R, and send a morphism to the obvious entry-wise group homomorphism.

(iv) the functor (— ®z M) : Modr — Modp, for an R-module M, which sends a R-module N
to N ®r M and a morphism f : N — P to f ®idyy,

(v) the contravariant functor (—)* : Mod — Modp, for a ring R which sends an R-module
M to its dual module M*, and a morphism f°? : M — N to f*: N* > M*byg— go f,

(vi) the functor m;(—) : PCTop — Grp where PCTop is the full subcategory of Top of path
connected spaces, which sends a space X to its fundamental group 7 (X') and a continuous
map f : X — Y toits induced map on fundamental groups f. : m1(X) — m (V).
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Definition 1.17. We say that the category C is locally small if Hom(X,Y") is a set for all X and Y, and
small if it is locally small and the class of objects of € is also a set.

Definition 1.18. Suppose C is locally small and X € €. The hom-functor of X is the functor
Hom(X,—):C—>Set Yo Hom(X,Y) (f:YV —>2Z)— (fo-)

where (f o —) : Hom(X,Y) — Hom(X, Z) maps g — f o g. There is also a contravariant version

Hom(—, X) : C°P — Set Y — Hom(Y, X) (fP:Z—>Y)—>(—of)
where (— o f) : Hom(Z, X) — Hom(Y, X) maps g — g o f. We also define the functor

Hom(—,—):C®* x€C—D (X,Y) —» Hom(X,Y)
and for a morphism (fP : X; — Xs,9: Y] — Y3) : (X1,Y7) — (X2, Y2), we map it to
(go—o f): Hom(X1, Y1) » Hom(Xs,Y3) h+ gohof
Remark 1.19. Suppose C is locally small and X € €. We also use the notations
H#* = Hom(X, ) Hx = Hom(—, X) S := Hom(—, —)

for the covariant, contravariant, and bivariate hom functors.

Definition 1.20. Let J, C be categories, a diagram indexed by J in € is simply a functor .# : J — C.
We say that the diagram .# commutes if for each X,Y € J,if f, g € Hom(X,Y) then .Z[f] = Z|g].

Example 1.21. We represent a diagram .# : J — C as a directed multigraph in the same shape as
the index category J, and label the vertices and edges with their images of .%# in C. For example,

A—L B

¢ —— D
and this square commutes if and only if go f = e o h.
Definition 1.22. Let €, D be categories, and .#,¥ : € — D be functors, a natural transformation from

F t0 ¥, denoted ¢ : F = ¥, is the data of a morphism ¢x : .Z(X) — ¥4(X) for each X € € such
that the following diagram commutes

F(X) —2 9(X)

fmJ ‘%m

FY) 5 4(Y)

for all morphisms f : X — Y in €. In other words, 4[f] o ox = ¢y o F[f]|forall f : X — Y inC.
Moreover, if px is an isomorphism for each X € C, we say y is a natural isomorphism.

Definition 1.23. Let C, D be categories, and let &,.%,% : C — D be functors. Suppose ¢ : & = F
and v : # = ¢ are natural transformations. We define their (vertical) composition ¢ o ¢ : & = ¢ as
the natural transformation (¢ o ¢) x = ¥x o px for every X € C.

Definition 1.24. Let C, D, € be categories and .#1,G1 : € — D and %#3,G5 : D — & functors. Let
v F1 =% and ¢ : ¥y = % be natural transformations, then define their horizontal composition
Yxp: Fyo P = %o as (Yx*p)x =Yg (x)° F2lex]

Example 1.25. Let C, D be categories and .% : C — D a functor, then there is a identity natural
transformation idz : # = % given by mapping (id#)x = id z(x) for each X € C.
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Example 1.26. Here are some examples of natural transformations
(i) let (—)*, GL, : Ring — Grp be functors defined in Example 1.16, then we have the natural
transformation det : GL,,(—) = (—)* where detg : GL,(R) — R* is the determinant,

(ii) let (—)** = ((—)*)* : Modx — Modp be the composition of the dual space functor with
itself, then there is natural transformation eval : idyod,, = (—)** given by evaly : V — V**
where evaly (v)(f) = f(v) is the evaluation map; it is a natural isomorphism if we replace
Modx with FVectg, its full subcategory of finite dimensional vector spaces,

(iii) let (—)* @r M : Mod}} — Modpg be the composition of (—)* with (—) ® M defined in
Example 1.16, for a ring R and an R-module M; let Hom(—, M) : Mod}) — Modp, be the
contravariant hom-functor valued in Modp (with the natural module structure inherited
from M), there is a natural isomorphism ¢ : (—)*®r M = Hom(—, M) where for R-module
N, the map ¢y : N* ®r M — Hom(N, M) is given by pn(f ® m)(n) = f(n)m,

Definition 1.27. Let C, D be categories, the functor category from € to D, denoted Fun(C, D), is
the category where objects are functors .% : € — D, morphisms are natural transformations, and
composition is given by vertical composition.

Remark 1.28. Natural isomorphisms are precisely the isomorphisms in the functor category.

Definition 1.29. Let C, D be categories, a functor .% : € — D is called an equivalence if there is a
functor 4 : D — € such that there are natural isomorphisms 7 : ide = ¥ o Fand ¢ : % o G = idyp.
If there is an equivalence between € and D, we say they are equivalent and write € ~ D. Moreover,
we call ¢ the quasi-inverses of .% and call the pair of functors an equivalence of categories.
Example 1.30. Here are some examples of equivalent categories

(i) Ab ~ Mody,

(i) Galzl; K = SubGrpg. 1 /Kk) where Galy i is the category of intermediate extensions of a

Galois extension L/K with injections as morphisms, and SubGrpg, (1) is the category of
subgroups of Gal(L/K') with injective homomorphisms as morphisms.

(iii) Top ~ Kur where Kur is the category where objects are sets X with a Kuratowski closure
operator cl : 2% — 2% and morphisms are maps preserving the closure.

Definition 1.31. Suppose C, D are categories and .% : C — D is a functor. For each X,Y € C, let
Fxy Hom(X,Y) - Hom(% (X), #(Y)) where f+— Z[f]
then we say that .7 is
(i) faithful if Fx y is injective for all X,Y € C,
(i1) full if Fx y is surjective for all X,Y € C,
(iii) fully faithful if Zx y is bijective for all X,Y € C,
Moreover, call .7 essentially surjective if for all Y € D exists X € € such that .#(X) 2 Y in D.

Theorem 1.32. A functor is an equivalence iff it is fully faithful and essentially surjective.
Proof. Technical. See [KS06, Thm. 1.3.13, p. 22]. O

Definition 1.33. Let C be a locally small category. Define €= Fun(C°P, Set) and €= Fun(C, Set)
as its categories of presheaves and copresheaves. The Yoneda embedding is the functor

€@ —>C X x =Hom(—,X)

and for f : Y — Z, define ([ f])x : Hom(X,Y) — Hom(X, Z) as (f o —) for each X € C. Dually,
the co-Yoneda embedding is the contravariant functor

S CP € X — #% = Hom(X, —)
and for f°P : Z — Y, define (74| f])x : Hom(Z, X) — Hom(Y, X) as (— o f) for each X € C.
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Definition 1.34. Let C be a locally small category. Define the global sections functor as
I'(e,—):CP xC—>Set (X,F)—>.Z(X)
and sending a morphism (f°P? : Y — X, ¢ : F = ¥¢) to the morphism px o F[fP] = 4[fP] o py.
Dually, we define the global sections cofunctor, abusing notation, as
I(e,—):CxC>Set (X,F)—> F(X)
and sending a morphism (f : X — Y, ¢ : % = ¢) to the morphism ¢y o Z[f] = 9[f] o px.
Definition 1.35. Let C be a locally small category. Define the functor
Homg (4, ) : € x C — Set  (X,.7) — Homg(Hx, F)

and sending a morphism (f?:Y — X, p: .F = ¢) to

(po— o JLJ]) : Homg( Ay, F) — Homg(Hx,9) > oo Hf]
Dually, define the functor

Homé(%',—):exéHSet (X, %) — Homy

¢ (7. 7)

and sending the morphism (f: X - Y,p: . % = ¥) to
(gpo — O%.[]mp]) . Homé (%X,ﬁ) — Homé (%Y,g) w = @ ol/} e} <ff.[f()p]

One can view Homg (%, —) as the composition of 7, with the first factor of Homg(—, —), and also

view Homg(#*, —) similarly as the composition of 7#’* with the first factor of Homg(—, —).

Lemma 1.36 (Yoneda). Let C be a locally small category. There are natural isomorphisms
@

7
(2, -) L'(e,—)
‘V/

\

Homé

which are inverses of each other.

Proof. Let X € Cand let.Z : € — Set be a functor. For a natural transformation ¢ : #X — .7 and
amorphism f : X — Y in C, the diagram given by

Home(X, X) — 2 Z(X)

(fO)l l«?[f]

Home(X,Y) — 22— Z(Y)
commutes. Thus ¢y o (f o —) = .Z[f] o px. Evaluating at id x on both sides yields
ey (f) = Z[f1(ex(idx))
therefore the natural transformation ¢ is completely determined by u = ¢ x (idx ). Therefore, let
®: Homg(#°,—) =T(e,—)  P(x 7)(p) = px(idx)
and, by the same identity, the inverse of ® is naturally
U:l(e,—) = Homé(f%ﬂ.a =) \II(X,y)(u) =

where ¢y : Hom(X,Y) — #(Y) is given by ¢y (f) = (Z[f])(u), for each Y € €. It is not hard for
the reader to verify that indeed Vo ® = idHomé (ws,—yand ® o ¥ = idp(, . O
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Remark 1.37. The preceding Lemma 1.36 is known as the fundamental theorem of category theory.

Lemma 1.38 (co-Yoneda). Let C be a locally small category. There are natural isomorphisms

G
7
Hom@(jéph_) F(.7_)
‘\\—/
I
which are inverses of each other.
Proof. Completely symmetric to Lemma 1.36. O

Theorem 1.39. Let C be a locally small category, then the Yoneda and co-Yoneda embeddings

Ho:C—C and A :C%P - C
are fully faithful.
Proof. Let X,Y € €, then by Lemma 1.36, for any functor .# : € — Set, there is a map

Q(x,7) Homé(%”X,ﬁ) — F(X)
which, by Remark 1.28, is a bijection, since ® is a natural isomorphism. Let # = 7 Y then

D (x4 : Homg (%, 47 ) — A (X) = Home (Y, X)
is a bijection. This gives the inverse for the map
Homeos (X, V) 25 Homg (X, )

Thus #° is fully faithful. For the dual 77, the proof is completely symmetric. O

Lemma 1.40. Let C, D be categories and .% : € — D a functor. Let 7 : I — C be a commutative diagram
in C, then # o 9 : I — D is a commutative diagram in D.

Proof. Straightforward by definition. O

Lemma 1.41. Let C, D be categories and .% : C — D a fully faithful functor, then the morphism | f] :
F(X) — F(Y) is an isomorphism in D if and only if f : X — Y is an isomorphism in C.

Proof. Forward direction is an easy consequence of Lemma 1.40 applied to the diagram

f

x~ vy
_

f—l
For the backwards direction, by fullness of .%, choose g : Y — X with #[g] = #[f]~!. Then we
have Z[f o g] = Z[f] o #[g] = id#(x) so by faithfulness of .7, we have f o g = idx. By similar
arguments, we have g o f = idy, so g is the inverse of f. Therefore f is an isomorphismin €. [
Theorem 1.42. Let C be a locally small category, then for a morphism f : X — Y in C, TFAE
(i) f: X — Y isan isomorphism in C,

(ii) JG|f] : #x — H5 is an isomorphism in C,

(iii) H°[fP] : Y — X is an isomorphism in C,
Proof. Striaghtforward by Theorem 1.39 and Lemma 1.41. 0
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2. ALGEBRAIC GROUPS
Throughout the text, unless specified otherwise, fix a ring R, which we shall call our ground ring.

Convention 2.1. We assume rings are commutative and unital, and algebras are associative, commu-
tative, and unital. In particular, in our convention an algebra A over a ring R is equivalent to the
data of a ring A with a ring map ¢ : R — A, viewing the scalar multiplication as 7 - a = ¢(r)a. We
will use this equivalence frequently and often implicitly.
Definition 2.2. A R-functor is a functor
X : Algrp — Set

and the category of R-functors is the functor category Funp := Fun(Algp, Set).
Definition 2.3. Suppose A is a R-algebra, its spectrum is the R-functor

Spec(A) := Homaig, (4, —) : Algp — Set
An affine R-scheme is the spectrum of a R-algebra. The affine n-space is the affine R-scheme

& = Spec(R[z1,...,%n])

The category Aff i of affine R-schemes is the full subcategory of all affine R-schemes of Funp.
Remark 2.4. The notion of affine R-schemes generalizes the notion of affine varieties. For readers
who have experience in algebraic geometry, you might have been taught that an affine K-variety

for some algebraically closed field K is a subset of K™ for some n given by the vanishing set of
some polynomials f1,..., fm, € K[z1,...,z,], thatis, the set

{(x1,...,2n) € K" : f1(x1,...,2n) =+ = fu(x1,...,25) = 0}

For our purposes, however, we take a functorial perspective to varieties. To see what this is about,
we first make the important observation that the above set can be naturally identified as the set

Klz1,..., 2] K[mlj...,xn])
(fla"'uf’m) (f17"‘7fm)

Namely, each ¢ € X (K) can be identified with (¢(z1), ..., ¢(x,)) € K™. Similarly, for polynomials
fi,..., fm € Rlz1,...,xy], the set X(S) for an R-algebra S can be identified as the set

{(1,...,2p) € S": fi(z1,...,2n) = -+ = fr(z1,...,25) = 0}

where f1,. .., fm are identified as their images along the natural map R[z1,...,z,] — S[z1,...,zy]
induced by the structure map R — S. Thus, what the spectrum of a R-algebra encodes is the
vanishing sets of a set of polynomials over each R-algebra.

X(K) = Homajg, ( ,K> where X = Spec(

Definition 2.5. Suppose that X = Spec(A) is an affine R-scheme where A is a R-algebra. Let S be
another R-algebra then we call the set
X(S) = HomAlgR(Aa S)

the S-points of X. When S is a field, it is also called the S-rational points of X.

Remark 2.6. Recall that a R-algebra A is said to be finitely generated if there is a surjective map
R[z1,...,zy] — A, or equivalently A = R[x1,...,2,]/] for someideal I < K[z,...,z,]. If Ris
noetherian, that is, each of its ideals is finitely generated, then by Hilbert’s basis theorem, so is
R[z1,...,zy], whence the finitely generated R-algebras are of the form R[z1,...,z,]/(f1,..., fm)-

Remark 2.7. One huge advantage that affine schemes provide is their treatment of nilpotence. The
vanishing set of a polynomial f € K[z1,...,z,] for K a field is the same as that of f2. However,

Spec(K[x1, ..., 2a]/(f)) # Spec(K[z1, ..., 2a]/(f*))
with the right hand side being thought of as having an infinitesimal thickening or nilpotent thickening.
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Remark 2.8. Let S be a R-algebra, then A}%(S) = Homayg,, (R[z], S) is canonically a R-algebra by
(0 +¥)(f) = o(f) +¢(f)
(pv)(f) = &()(f)
(ro)(f) =ro(f)
for each ¢, € AL(S) and r € R, where f € R[z]. Note that naturally AL(S) =~ S as R-algebras.

Definition 2.9. For an affine R-scheme X : Algr — Set, its coordinate ring (resp. coordinate algebra)
is the ring (resp. R-algebra)
O(X) := Homag, (X,A})
with the algebraic operations given as follows: given f,g € O(X)andr € R
(f +9)s(d) = fs() + gs(o)
(f9)s(9) = fs(¢)[s(9)
(rf)s(®) = rfs(¢)
where ¢ € X (), for each R-algebra S. Moreover, define the contravariant functor
O:AffY — Alg, O = Homag,(—,Ap)
where for a morphism ¢ : X — Y of affine R-schemes, the induced map
OlpP] =¢*: OY) > O(X)  d—dop
is called the induced regular map of ¢.
Definition 2.10. Define the contravariant functor
Spec : Algy — Affp A — Spec(A)
where for each morphism ¢ : A — B of R-algebras, there is the induced natural transformation
©* : Spec(B) — Spec(A)
called the pullback given by
s+ Spec(B)(S) — Spec(A)(S) b o
for each R-algebras S.
Theorem 2.11. The pair of functors Spec and O is an equivalence of categories
Spec
/_\\
Alg® Affp
\5/
Proof. Suppose A is a R-algebra, then applying Lemma 1.36, namely, the Yoneda lemma
O(Spec(A)) = Homag, (#4, AR) = Ak(A) = A

where we leave it to the reader to check that the relevant bijection is an isomorphism of K-algebras.
Conversely, let X = Spec(A), then there is an induced natural isomorphism of hom-functors

Spec(O(X)) = Homayg,, (O(Spec(4)), —) = Homayg, (A4, —) = X
Therefore Spec and O are quasi-inverses of each other. 0
Definition 2.12. A R-group functor is a functor
G :Algp — Grp
The category of R-group functors is the functor category GFunp = Fun(Algg, Grp).
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Definition 2.13. An affine R-group scheme is a R-group functor G : Algp — Grp such that its
composition with the forgetful functor to Set

G Algp R Grp — Set

is an affine R-scheme. Further, we say an affine R-group scheme G is an (affine) algebraic group
over Rif G is of finite type, i.e. it is the spectrum of a finitely generated R-algebra. Define GAff
and GAlgp, the categories of affine R-group schemes and (affine) algebraic groups over R, as full
subcategories of GFunp, respectively.

Convention 2.14. In this text, “algebraic group” always means affine algebraic group. However,
it is important to keep in mind that there are things like abelian varieties which are considered
algebraic groups in broader context but are by no means affine.

Example 2.15. Here are some examples of algebraic groups over R,
(1) the additive group
Gq : Algp — Grp S— (S,+)

where G, ~ Al,
(if) the multiplicative group, also known as the 1-torus,

G, : Algp — Grp S— S

where G,, =~ Spec(R[z,z71]),
(iif) the multiplicative group of n-th roots of unity,

tn : Algp — Grp S—{aeS*:ad" =1}
where i, = Spec(R[z]/(z™ — 1)),

Definition 2.16. Let S a R-algebra. If M is an R-module, define the base change (or extension of
scalars) of M from R to S as the S-module M ®g S. If M is a S-module, define its Weil restriction
(or restriction of scalars) from S to R as the R-module Resg/p M with the same additive group as
M with scalar multiplication given by rm = ¢(r)m for r € R and m € M where ¢ : R — S is the
structure map. These define functors (—) ®r S : Modgr — Modg and Resg/r : Mods — Modpg.
We define the base change and Weil restrictions for algebras in the exact same way, giving rise to
functors (—) ®r S : Algp — Algg and Resg/r : Algg — Algp.

Convention 2.17. Let S a R-algebra. If M is a R-module, we also use the notation Mg = M ®g S. If
M is an S-module, we write M = Resg/r M.

Convention 2.18. Let X = (z;;)1<i j<n be a n-by-n matrix of indeterminants. For any ring R, let
R[X] = R[l’l’l, 1,25 - - 71"71,11]

Abusing notation, identify X = (2;;)1<ij<n € Mn(R[X]). For any F' = (f; j)1<ij<n € Mn(R[X]),
denote det F' := 3 g sgn(o) [[iL; fiou) € R[X]and tr(A) := X", fi; € R[X]. Moreover, we
denote the ideal (F) := (fi1, f1,2,-- -, fan) S R[X].

Example 2.19. Here are some more examples of algebraic groups over R,

(1) the general linear group of a free module V' over R of rank n,
GLy : Algp — Grp S — Autmods (Vs) = Autmods (V ®r S)

R[M][y]

(y det (M)

where éﬁ/ =~ Spec ( 1

) where M = (m; j)1<i j<n is an indeterminant matrix,



LINEAR ALGEBRAIC GROUPS AND REPRESENTATION THEORY 11
(if) the special linear group of a free module V over R of rank n,
SLy : Alg, — Grp S — Ker (GLV(S) dets, 5*)

R[M]
(det(M) — 1)

Convention 2.20. Let V be a free R-module of rank n. We denote GL,, := GLy and SL,, := SLy.

where SLy =~ Spec ( > where M = (m; j)1<i,j<n is an indeterminant matrix.

Definition 2.21. Let V' be a module over an arbitrary ring R. Suppose ¢ : R — R is a ring map
satisfying o o ¢ = id, which we call the involution map. A function

B:VxV->R

is called form on V, and is said to be
(i) left linear if B(rv + u,w) = rB(v,w) + B(u,w) forallr € Rand u,v,we V,
(ii) left o-linear if B(rv + u,w) = o(r)B(v,w) + B(u,w) forall r € Rand u,v,we V,
(iit) right linear if B(v,rw + u) = rB(v,w) + B(v,u) forall r € Rand u,v,w eV,
(iv) bilinear if it is left linear and right linear,
(v) o-sesquilinear if it is left o-linear and right linear,
(vi) symmetric if B(v,w) = B(w,v) forallv,w eV,
(vii) o-symmetric if B(v,w) = o(B(w,v)) forallv,w eV,
(vii) alternating if B(v,v) = 0forallv eV,
(ix) nondegenerate if B(v, w) = 0 for all v € V implies w = 0,
(x) orthogonal if it is a bilinear, symmetric, and nondegenerate,
(xi) symplectic if it is a bilinear, alternating, and nondegenerate,
(xii) o-Hermitian if it is o-sesquilinear, c-symmetric, and nondegenerate.

Definition 2.22. Let B; : V xV — Rand By : V x V — R be forms on a module V over an ar-
bitrary ring R. We say B; is equivalent (or isometric) to By if there exists an invertible linear map
P :V — V,which we call an isometry, satisfying B; (v, w) = B2(P(v), P(w)) for all v,w € V.

Example 2.23. Let V. = R" be the free module of rank n over a ring R with basis ey, ..., e,. The
standard inner product (:,-) : V x V' — R given by (v, w) = vjw; + -- - + vpwy, for eachv,w e V,
where v = vie; + -+ + vpe, and w = wieg + - - - + wyey, is an orthogonal form on V.

Example 2.24. Let V = W @ WY over a ring R where W = R" is the free module of rank n, then
the hyperbolic form B : V x V' — R given by ((v, ¢), (w,v)) — ¢(w) + 1(v) is an orthogonal form.

Example 2.25. Let L | K be a finite separable field extension. The form Try/x : L x L — K given
by (a,b) — trp,k(ab), where try, i is the field trace, is an orthogonal form called the trace form.

Example 2.26. Recall that a quadratic form on a free module V' = R" of rank n over R is a quadratic
homogeneous polynomial map ¢ : V — R

q(@1, . wn) = ) i

1<ij<n

Recall the polar form b, : V' x V' — R of a quadratic form ¢ : V' — R is the symmetric bilinear form

be(z,y) = q(z +y) — q(x) — q(y)

and we say ¢ is nonsingular if b, is nondegenerate. Suppose 2 is invertible in R, then we can define
the polarization B, = 3b, of ¢, which satisfies q(z) = By(x, z). Therefore, when 2 is invertible in R,
a quadratic form ¢ corresponds uniquely to a symmetric bilinear form B,,.
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Example 2.27. Let V = R?" be the free module of rank 2n over a ring R, the formw : V xV — R
given by w(z,y) = 21 Jy, where J € Ma,(R) is the matrix

= (% %)
with I;, the n-by-n identity matrix, is a symplectic form called the standard symplectic form.
Definition 2.28. A quadratic étale algebra E over a ring R is a R-algebra such that
E = R[z]/(x® + bz + c)
for some b, c € R where b — 4c € R*. Define its involution as the unique nontrivial automorphism
c:F—FE r— —b—u
which satisfies o 0 o = idg and fixes R.
Example 2.29. Let E be a quadratic étale algebra over R with involutiono : £ — E.
Example 2.30. scaled Hermitian trace form

Proposition 2.31. Let B : V x V — R be a bilinear form. If B is alternating then it is antisymmetric, i.e.
B(z,y) = —B(y,x) for z,y € V. Conversely, if B is antisymmetric and 2 € R*, then B is alternating.

Proof. Suppose B is alternating. For v, w € V, we have

0= B(’U +w,v +w) = B(’U,’U) + B(an) + B(wav) + B(w7w) = B(v,w) + B(wav)
Thus B(v,w) = —B(w, v) for all v, w € V. Conversely, suppose 2 € R* and B is antisymmetric then
for all v € V we have B(v,v) = —B(v,v) so 2B(v,v) = 0, thus B(v,v) = 0. O
Proposition 2.32. A finite rank free module admitting a symplectic form is of even rank. All symplectic
forms are isometric.
Proof. Let V be a finite rank free module over a ring R with symplecticform P: V xV — R. 0O

Definition 2.33. Let V = R" be the free module of rank n over a ring R with an ordered basis
e=(e1,...,en). Let B: V x V — R be a form, then the Gram matrix of B with respect to ordered
basis e, is the matrix [B]. := (B(ej, €;))1<ij<n € Mn(R).

Proposition 2.34. Let V' = R" be the free module of rank n over a ring R with an ordered basis e. Suppose
B:V xV — Risaform. Let 0 : R — R be an involution. We have the following.

(i) [B]¥ = [Ble iff B is o-sesquilinear and o-symmetric,
(ii) [B]} = [B]. iff B is bilinear and symmetric,
(iii) [B]Y = —[B). iff B is bilinear and alternatzng,
(iv) B(z, ) [2]5[Blely]e for all z,y € V, iff B is o-sesquilinear,
(v) B(x,y) = [)F[Blely]e for all x,y € V, iff B is bilinear,
(vi) [B]pe = [P]¥[B]e[P]e for any invertible linear map P : V' — V., iff B is o-sesquilinear,

(vii) [B]pe = [P][B]e[P]e for any invertible linear map P : V — V, iff B is bilinear,

€
(viii) Bis nondegenemte iff its Gram matrix | B]. is invertible,

where M* := (o(m;;)) € Mix¢(R) denotes the o-conjugate transpose of M = (m; ;) € Myxi(R).
Proof. O
Remark 2.35.

Definition 2.36. Let R be an arbitrary ring, suppose S is a R-algebra, V' is a module over R, and
B :V x V — R abilinear form on V. The base change of B from R to S is the bilinear form

Bs: Vs x Vg — S (v®r,w®s) — B(v,w)rs
on Vs = V ®r S, extended bilinearly.
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Definition 2.37. Base change for
Example 2.38. Let V' be a free R-module of rank n with an orthogonal form B : V' x V' — R. Here
are some more examples of algebraic groups over R.
(i) the orthogonal group of the pair (V, B)
Ov,p: Algr — Grp
where for each R-algebra S
Ov.s(S) = {9 € Autmods(Vs) : Yu,w € V, Bg(gv, gw) = Bg(v,w)}

R[M]
(MTBM — B)
(if) the special orthogonal group of the pair (V, B)
(iif) the orthogonal semilitude group
(iv) the special orthogonal semilitude group

where Oy, g = Spec < > where M = (m; j)1<i,j<n is an indeterminant matrix

Example 2.39. Let V' be a free R-module of rank 2n with an symplectic form P : V' x V — R. Here
are some more examples of algebraic groups over R.

(i) the symplectic group of the pair (V, P)
Spy,p : Algg — Grp
where for each R-algebra S
Spy,p(S) = {9 € Autmoas(Vs) : Vv, w € V, Bs(gv, gw) = Bs(v,w)}

T _ R[M]
where Spv’p = Spec <(]\4-TB]\4'—B)

(ii) the symplectic semilitude group

> where M = (m; ;)i<i, j<n is an indeterminant matrix

Example 2.40. Unitary groups
Example 2.41. Pin group, Spin group, GPin, GSpin
Example 2.42. Exceptional groups
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3. BASIC PROPERTIES

sheaf of regular functions dimension connectedness, irreducibility products, semidirect product,
identity component, open/closed subgroups, actions, kernel, image, generators

4. HOPF ALGEBRAS
5. JORDAN DECOMPOSITION
6. LIE ALGEBRAS
7. ROOT SYSTEMS AND ROOT DATUM
8. ISOMORPHISM AND EXISTANCE THEOREMS
9. REPRESENTATIONS OF SPLIT REDUCTIVE GROUPS
10. TANNAKIAN DUALITY
11. TORIC VARIETIES
12. FLAG VARIETIES

13. SPHERICAL VARIETIES
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